Field Documents

Today's conditions

Air Temperature (${ }^{\circ} \mathrm{C}$)	${ }^{\circ} \mathrm{C}$	\square hot		\square warm	$\square \mathrm{cool}$
Water Temperature (${ }^{\circ} \mathrm{C}$)	${ }^{\circ} \mathrm{C}$	\square hot		\square warm	$\square \mathrm{cool}$
Wind Conditions (km/hr)	km/hr	\square gale		\square windy	\square still
Wind Direction					
Rainfall (Since 9am)	mm				
Wave Height (m) (To tenth metre/ 0.00 m)	m				
Swell Height (m) (To one tenth of metre)					
Type of wave	\square surging		\square plunging		\square spilling
How does it look?	\square flat		\square even waves		\square choppy
UV prediction					
What specific hazards should you be aware of given the conditions today?					

Qualitative Data

Qualitative data collection enables us to develop a broad understanding of patterns in the ecosystem and provides a descriptive snapshot of the abiotic and biotic features present in the ecosystem.

Qualitative data can include photos and videos of the environment as well as descriptions of species.
A qualitative method of estimating abundance of populations uses the CON scale.

Common	Easily found
Occasional	Found with careful searching
None	Species is absent

Complete the CON table below to estimate the abundance of various populations in different sections of the tidal zone. Use an x to mark how frequently a species is found in each tidal zone the first one has been completed for you

Species	C	0	N	Tidal Zone
			x	High
		x		Mid
Neptune's necklace (Hormosira banksii)	x			Low
				High
				Mid
Sand anemone (Oulactis muscosa)				Low
				High
				Mid
Swift-footed crab (Leptograpsus variegatus)				Low

Takes photos of your field study site and label the high mid and low tide areas

Collecting Quantitative rockpool data

Quantitative data is numerical data that can be analysed to help support or reject the hypothesis

Equipment Required

$\boldsymbol{\checkmark} 30 \mathrm{~m}$ Rope/ tape marked every metre
$\checkmark 25 \mathrm{~cm} \times 25 \mathrm{~cm}$ quadrats
\checkmark Thermometer
\checkmark Field Identification guide in colour
\checkmark Measuring tape
\checkmark Ropes for transects

Transect Sampling Procedure:

1. Sampling should take place close to low tide
2. Place a 30 metre rope marked at each metre parallel to the splash zone close to the high tide mark
3. Use a random number generator (1-30) to determine the location of transects.
4. Run transects perpendicular from the rope at the marking specified by random number generator towards the low tide mark

Species	C	0	N	Tida Zone
Rough limpet (Siphonaria diemenensis)				High
				Mid
				Low
Blue periwinkle (Austrolittorina unifasciata)				High
				Mid
				Low
				High
				Mid
Black nerites (Nerita melanotragus)				Low

5. Divide the transect (running from the rope to the low tide mark) into 10 equal sampling points. E.g. if the distance from the rope to the low tide mark is 50 m samples will be taken every 5 metres.
6. Collect a sample at rock pool close to each of these sampling points. If the sampling point does not fall at a rock pool move to the closest rockpool within 5 m . If no rockpool is within 5 m record 0 for all measurements.
7. Place a $25 \mathrm{~cm} \times 25 \mathrm{xm}$ quadrat randomly in the rockpool, identify any species within this quadrat and record the number of individuals
8. Species half in, half out, include individuals which fall under 2 nominated sides.
9. Record the water temperature for the rockpool
10. Record the distance of the front edge of the pool from the low water mark in metres
11. Record the length and breadth of the rock pool to determine an estimated surface area the surface area (length x breadth in m 2)
12. Collect data from 10 rock pools, share data where required.

Quantitative Rockpool Data

Abiotic Measurements

Rockpool	Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Surface Area $\left(\mathrm{m}^{2}\right)$	Distance to low tide mark (m)
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Species Found in rockpools

	Number of individuals found in quadrat									
Rockpool	1	2	3	4	5	6	7	8	9	10
Species										

